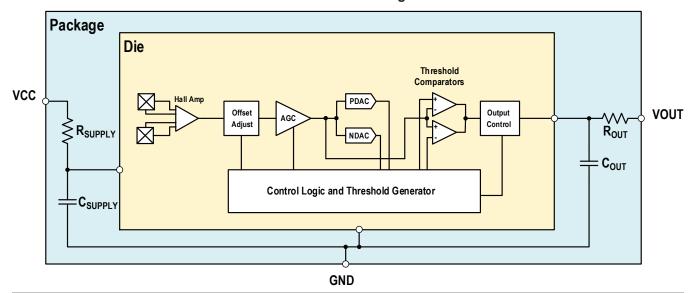


FEATURES AND BENEFITS

- Three-wire back-biased speed sensor optimized for transmission speed-sensing applications
- Integrated in-package EMC protection circuit allows compliance to most Automotive EMC environments without external circuitry
- Small-signal lockout for immunity to vibration
- Tight timing accuracy over full operating temperature range
- True zero-speed operation
- Air gap independent switchpoints
- Large operating air gaps achieved through use of gain and offset adjust circuitry
- Wide operating voltage range with undervoltage lockout (UVLO)
- Digital output representing target profile
- Single-chip sensing IC for high reliability
- · High-speed startup

PACKAGE: 3-pin SIP (suffix SM)

Not to scale


DESCRIPTION

The ATS668LSM is an optimized Hall-effect integrated circuit (IC) and permanent magnet pellet combination with integrated EMC protection components to provide a user-friendly solution for true zero-speed digital gear tooth sensing. The small package can be easily assembled and used in conjunction with a wide variety of gear tooth sensing applications.

The device incorporates a dual element Hall IC that switches in response to differential magnetic signals created by a ferromagnetic target. The IC contains a sophisticated compensating circuit designed to eliminate the detrimental effects of magnet and system offsets. Digital processing of the analog signal provides zero-speed performance independent of air gap and also dynamic adaptation of device performance to the typical operating conditions found in automotive applications (i.e. vibration immunity and runout tolerance). High-resolution peak detecting DACs are used to set the adaptive switching thresholds of the device. Hysteresis in the thresholds reduces the negative effects of any anomalies in the magnetic signal associated with system or target anomalies typically seen in many automotive applications.

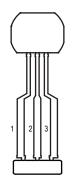
This device is available in a lead (Pb) free 3-pin SIP package (SM) with matte-tin leadframe plating.

Functional Block Diagram

ATS668LSM-DS, Rev. 2 April 24, 2017

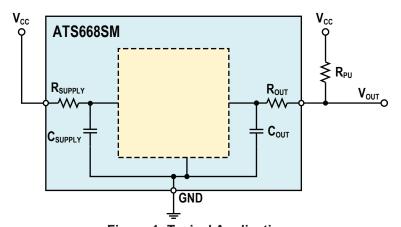
SELECTION GUIDE

Part Number	Package	
ATS668LSMTN-T	3-pin SIP with matte-tin leadframe plating	


ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Notes	Rating	Units	
Supply Voltage	V _{CC}		26.5	V	
Reverse Supply Voltage	V _{RCC}		-18	V	
Reverse Supply Current	I _{RCC}		50	mA	
Reverse Output Voltage	V _{ROUT}		-0.5	V	
Output Sink Current	I _{OUT}		25	mA	
Operating Ambient Temperature	T _A	Range L, refer to Power Derating Curve	-40 to 150	°C	
Maximum Junction Temperature	T _J (max)		165	°C	
Storage Temperature	T _{stg}		-65 to 170	°C	

INTERNAL PASSIVE COMPONENTS RATINGS


Symbol	Characteristic	Rating	Unit
C _{SUPPLY}	Rated Nominal Capacitance	220	nF
C _{OUT}	Rated Nominal Capacitance	1.8	nF
R _{SUPPLY}	Rated Nominal Resistance	50	Ω
R _{OUT}	Rated Nominal Resistance	50	Ω

Pinout Diagram

Terminal List Table

Number	Name	Function	
1	VCC	Supply voltage	
2	GND	Ground	
3	VOUT	Device output	

Figure 1: Typical Application

^{*}Contact Allegro[™] marketing or your local sales representative for additional options.

ATS668LSM

True Zero-Speed High-Accuracy Gear Tooth Sensor IC

OPERATING CHARACTERISTICS: Valid throughout full operating and temperature ranges, using Reference Target 60-0, unless otherwise noted.

Characteristics	Symbol Test Conditions		Min.	Тур.	Max.	Unit
ELECTRICAL CHARACTERISTICS						
Supply Voltage	V _{CC}	Operating, T _J < T _J (max)	4.6	_	24	V
Undervoltage Lockout	V _{UVLO}		_	4.1	4.55	V
Reverse Supply Current	I _{RCC}	V _{CC} = -18 V	_	_	-10	mA
Supply Current	I _{CC}		_	_	12	mA
Supply Zener Clamp Voltage	V _Z	$I_{CC} = I_{CC(MAX)} + 3 \text{ mA}$	28.0	_	_	V
Supply Zener Current	I _Z	$T_J < T_J(max), V_{CC} = 27 V$	_	_	15	mA
Reverse Supply Zener Clamp Voltage	V _{RZ}	I _{CC} = -3 mA, T _A = 25°C	_	_	-18	V
OUTPUT STAGE						
Low Output Voltage	V _{SAT}	I _{SINK} = 10 mA, Output = ON	_	750	1000	mV
Output Zener Clamp Voltage	V _{ZOUT}	I _{OUT} = 3 mA, T _A = 25°C	28.0	_	_	V
Output Current Limit	I _{LIM}	$V_{OUT} = 12 \text{ V}, T_J < T_J(\text{max})$	25	45	70	mA
Output Leakage Current	I _{OFF}	V _{OUT} = 24 V, Output = off state (V _{OUT} = High)	_	_	10	μΑ
Output Rise Time	t _r	D -410 V -5V	_	4	_	μs
Output Fall Time	t _f	$R_{PU} = 1 \text{ k}\Omega, V_{PU} = 5 \text{ V}$	_	6	_	μs

MAGNETIC CHARACTERISTICS

Characteristics	Symbol	Note	Min.	Тур.	Max.	Unit	
MAGNETIC CHARACTERISTICS							
Allowable Differential Signal Reduction	B _{seq(min)} / B _{seq(max)}	Over 60 cycles, see Figure 2	0.5	-	_	-	
	B _{seq(n+1)} / B _{seq(n)}	Single cycle-to-cycle variation	0.6	-	ı	-	

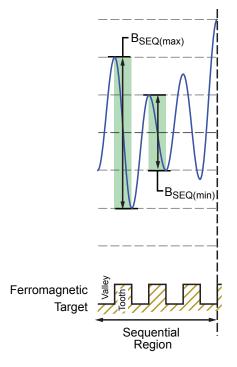
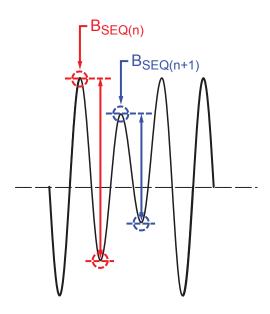
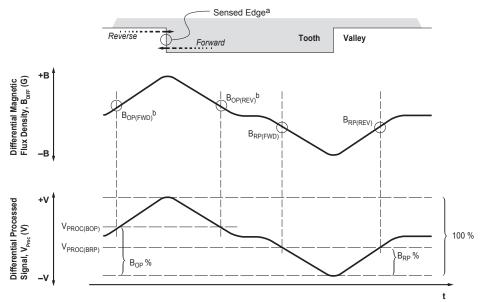


Figure 2: Differential Sequential Signal Variation




Figure 3: Sequential Pulse Variation

FUNCTIONAL CHARACTERISTICS

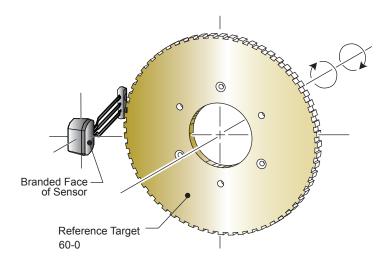
Characteristics	Symbol	Note		Тур.	Max.	Unit
POWER ON						•
Power-On State	POS	V _{OUT} state at t > t _{PO} ; see Figure 1	_	High	_	_
Power-On Time [1]	t _{PO}	f _{op} < 100 Hz	-	_	2	ms
AIR GAP						•
Operating Air Gap Range		Guaranteed to operate within specification	0.5	_	2.5	mm
Extended Air Gap Range		Switching only—not guaranteed to operate within spec	2.5	_	3	mm
OFFSET				'	,	
Dynamic Offset Cancellation	B _{DIFFEXT}	Allowable user-induced offset	±60	_	_	G
CALIBRATION	·					*
Initial Calibration [2]	CAL	Quantity of rising output edges required for accurate edge detection	-	2	3	edge
SWITCHING						`
Operating Speed	f _{OP}		0	_	12	kHz
Analog Signal Bandwidth	BW		15	20	_	kHz
Operate Point	OP		_	70	-	%
Release Point	RP		_	30	-	%
OUTPUT DUTY CYCLE [3]						
0.1.15.1.0.1	DC	AG = 0.5 mm to 2.5 mm, Pin 3 to 1 target rotation	39	_	52	%
Output Duty Cycle	DC	AG = 2.5 mm to 3.0 mm, Pin 3 to 1 target rotation	39	_	56	%

¹ Power-On Time includes the time required to complete the internal automatic offset adjust. DAC is then ready for peak acquisition.

³ Measured at f_{OP} = 2 kHz. Output rise and fall times should be considered when measuring duty cycle.

aSensed Edge: leading (rising) mechanical edge in forward rotation, trailing (falling) mechanical edge in reverse rotation

Figure 4: Definition of Terms for Switchpoints



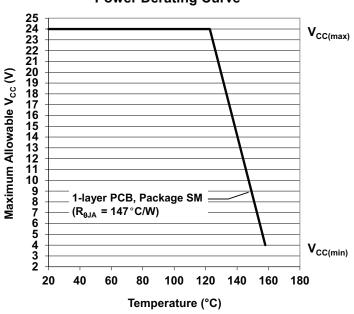
² For power-on frequency, f_{OP} < 200 Hz. Higher power-on frequencies may result in more input magnetic cycles until full output edge accuracy is achieved, including the possibility of missed output edges.

^bB_{OP(FWD)} triggers the output transition during forward rotation, and B_{OP(REV)} triggers the output transition during reverse rotation

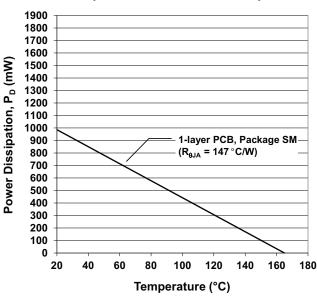
Reference Target 60-0 (60 Tooth Target)

Characteristics	Symbol	Test Conditions	Тур.	Units	Symbol Key
Outside Diameter	Do	Outside diameter of target	120	mm	t Do¬ h _{t¬}
Face Width	F	Breadth of tooth, with respect to sensor IC	6	mm	F-F-
Circular Tooth Length	t	Length of tooth, with respect to sensor IC; measured at D _O	3	degrees	The second of th
Circular Valley Width	t _v	Length of valley, with respect to sensor IC; measured at D _O	3	degrees	
Tooth Whole Depth	h _t		3	mm	Air Gap
Material		Low Carbon Steel	_	_	Branded Face of Package

Figure 5: Reference Target Measurement Setup

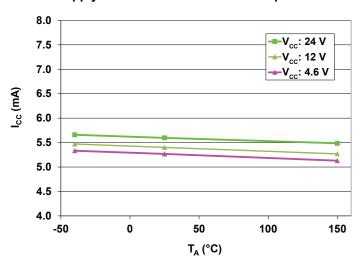

POWER DERATING

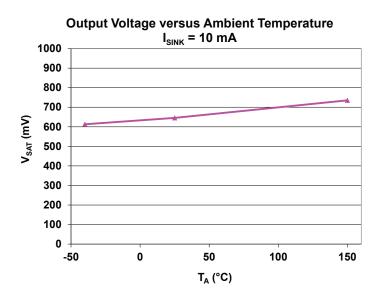
THERMAL CHARACTERISTICS: May require derating at maximum conditions, see Power Derating section

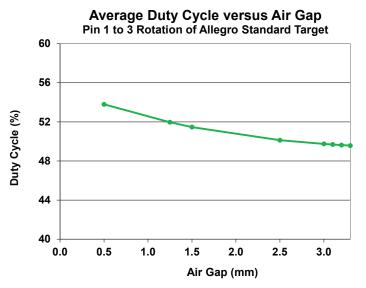

Characteristic	Symbol	Test Conditions*	Value	Unit
Package Thermal Resistance	$R_{ heta JA}$	Single layer PCB, with copper limited to solder pads	147	°C/W

^{*}Additional thermal information available on the Allegro website

Power Derating Curve


Power Dissipation versus Ambient Temperature

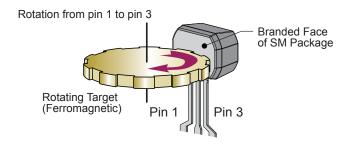




CHARACTERISTIC DATA

Supply Current versus Ambient Temperature

FUNCTIONAL DESCRIPTION


Sensing Technology

The ATS668 contains a single-chip differential Hall-effect sensor IC and a back-biasing pellet. The Hall IC supports a pair of Hall elements which sense the magnetic profile of the ferromagnetic gear target simultaneously, but at different points (spaced at a 2.2 mm pitch), generating a differential internal analog voltage, V_{PROC} , that is processed for precise switching of the digital output signal. The ATS668 is intended for use with ferromagnetic targets.

The Hall IC is self-calibrating and also possesses a temperature compensated amplifier and offset cancellation circuitry. Its voltage regulator provides supply noise rejection throughout the operating voltage range. Changes in temperature do not greatly affect this device due to the stable amplifier design and the offset compensation circuitry. The Hall transducers and signal processing electronics are integrated on the same silicon substrate, using a proprietary BiCMOS process

Target Profiling During Operation

An operating device is capable of providing digital information that is representative of the mechanical features of a rotating gear. The waveform diagram in Figure 7 presents the automatic translation of the mechanical profile, through the magnetic profile that it induces, to the digital output signal of the IC. No additional optimization is needed and minimal processing circuitry is required. This ease of use reduces design time and incremental assembly costs for most applications.

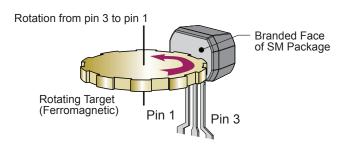


Figure 6: Sensor and target configuration. The output is low when a tooth of the target gear is nearest the branded face of the package.

Determining Output Signal Polarity

In Figure 7, the top panel, labeled Mechanical Position, represents the mechanical features of the target gear and orientation to the device. The bottom panel, labeled IC Output Signal, displays the square waveform corresponding to the digital output signal that results from a rotating gear configured as shown in Figure 6 and electrically connected as in Figure 1. That direction of rotation (of the gear side adjacent to the package face) is: perpendicular to the leads, across the face of the device, from the pin 1 side to the pin 3 side. This results in the IC output switching from low state to high state as the leading edge of a tooth (a rising mechanical edge, as detected by the IC) passes the package face. In this configuration, the device output switches to its high polarity when a tooth is the target feature nearest to the package. If the direction of rotation is reversed, so that the gear rotates from the pin 3 side to the pin 1 side, then the output polarity inverts. That is, the output signal goes high when a falling edge is detected, and a valley is nearest to the package.

Mechanical Position (Target movement pin 1 to pin 3)

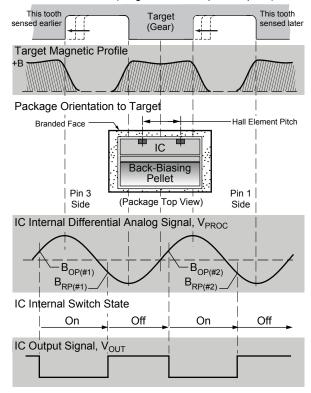


Figure 7: The magnetic profile reflects the features of the target, allowing the sensor IC to present an accurate digital representation of the target teeth.

ATS668LSM

True Zero-Speed High-Accuracy Gear Tooth Sensor IC

Undervoltage Lockout

When the supply voltage falls below the undervoltage lockout voltage, $V_{CC(min)}$, the device enters Reset, where the output state returns to the Power-On State (POS) until sufficient V_{CC} is supplied. This lockout feature prevents false signals, caused by undervoltage conditions, from propagating to the output of the IC.

Power Supply Protection

The device contains an on-chip regulator and can operate over a wide V_{CC} range. The device also includes integrated in-package EMC protection components virtually eliminating the need for additional external passive components.

Automatic Gain Control (AGC)

This feature allows the device to operate with an optimal internal electrical signal, regardless of the air gap (within the AG specification). At power-on, the device determines the peak-to-peak amplitude of the signal generated by the target. The gain of the IC is then automatically adjusted. Figure 8 illustrates the effect of this feature.

Automatic Offset Adjust (AOA)

The AOA circuitry automatically compensates for the effects of chip, magnet, and installation offsets. This circuitry is continuously active, including during both power-on mode and running mode, compensating for any offset drift (within the Allowable User-Induced Differential Offset). Continuous operation also allows it to compensate for offsets induced by temperature variations over time.

Running Mode Lockout

The ATS668 has a running mode lockout feature to prevent switching in response to small signals that are characteristic of vibration signals. The internal logic of the chip considers small-signal amplitudes below a certain level to be vibration. The output is held to the state prior to lockout until the amplitude of the signal returns to normal operational levels.

Watchdog

The ATS668 employs a watchdog circuit to prevent extended loss of output switching during sudden impulses and vibration in the system. If the system changes the magnetic input drastically such that target feature detection is terminated, the device will fully reset itself, allowing the chip to recalibrate properly on the new magnetic input signal.

Assembly Description

The ATS668 is integrally molded into a plastic body that has been optimized for size, ease of assembly, and manufacturability. High operating temperature materials are used in all aspects of construction.

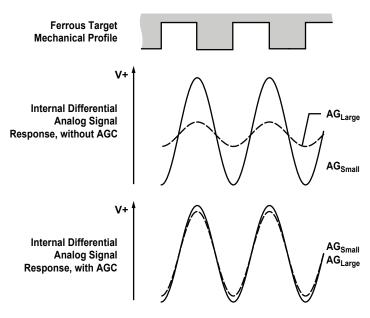


Figure 8: Automatic Gain Control (AGC). The AGC function corrects for variances in the air gap. Differences in the air gap cause differences in the magnetic field at the device, but AGC prevents that from affecting device performance, as shown in the lowest panel.

POWER DERATING

The device must be operated below the maximum junction temperature of the device, $T_{J(max)}$. Under certain combinations of peak conditions, reliable operation may require derating supplied power or improving the heat dissipation properties of the application. This section presents a procedure for correlating factors affecting operating T_J . (Thermal data is also available on the Allegro website.)

The Package Thermal Resistance, $R_{\theta JA}$, is a figure of merit summarizing the ability of the application and the device to dissipate heat from the junction (die), through all paths to the ambient air. Its primary component is the Effective Thermal Conductivity, K, of the printed circuit board, including adjacent devices and traces. Radiation from the die through the device case, $R_{\theta JC}$, is relatively small component of $R_{\theta JA}$. Ambient air temperature, T_A , and air motion are significant external factors, damped by overmolding.

The effect of varying power levels (Power Dissipation, P_D), can be estimated. The following formulas represent the fundamental relationships used to estimate T_I , at P_D .

$$P_{D} = V_{IN} \times I_{IN} \tag{1}$$

$$\Delta T = P_D \times R_{\theta IA} \tag{2}$$

$$T_{J} = T_{A} + \Delta T \tag{3}$$

For example, given common conditions such as: T_A = 25°C, V_{CC} = 12 V, I_{CC} = 6.5 mA, and $R_{\theta JA}$ = 147°C/W, then:

$$P_D = V_{CC} \times I_{CC} = 12 \text{ V} \times 6.5 \text{ mA} = 78 \text{ mW}$$

 $\Delta T = P_D \times R_{\theta JA} = 78 \text{ mW} \times 147^{\circ}\text{C/W} = 11.5^{\circ}\text{C}$

$$T_1 = T_A + \Delta T = 25^{\circ}C + 11.5^{\circ}C = 36.5^{\circ}C$$

A worst-case estimate, $P_D(max)$, represents the maximum allowable power level ($V_{CC}(max)$, $I_{CC}(max)$), without exceeding $T_J(max)$, at a selected $R_{\theta JA}$ and T_A .

Example: Reliability for V_{CC} at $T_A=150$ °C.

Observe the worst-case ratings for the device, specifically: $R_{\theta JA} = 147^{\circ}\text{C/W}$, $T_{J}(\text{max}) = 165^{\circ}\text{C}$, $V_{CC}(\text{max}) = 24 \text{ V}$, and $I_{CC}(\text{max}) = 12 \text{ mA}$.

Calculate the maximum allowable power level, P_D(max). First, invert equation 3:

$$\Delta T_{max} = T_{J}(max) - T_{A} = 165^{\circ}C - 150^{\circ}C = 15^{\circ}C$$

This provides the allowable increase to T_J resulting from internal power dissipation. Then, invert equation 2:

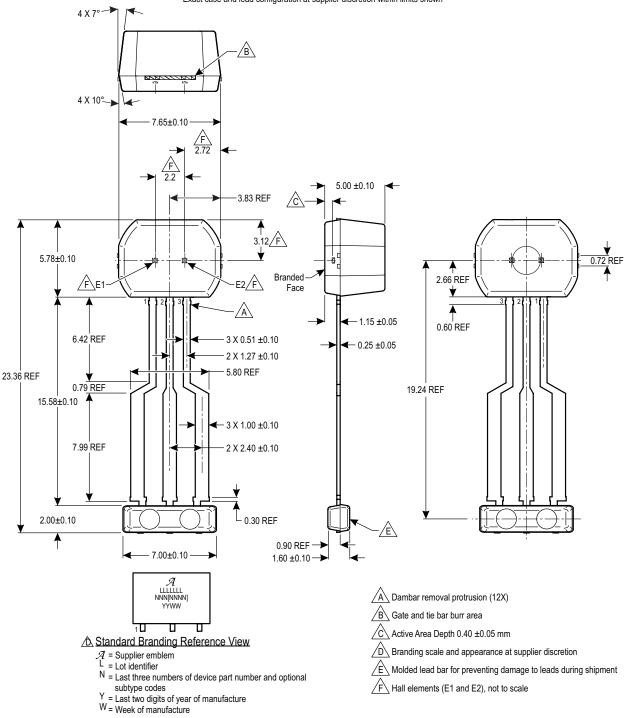
$$P_D(max) = \Delta T_{max} \div R_{\theta JA} = 15^{\circ}C \div 147^{\circ}C/W = 102 \text{ mW}$$

Finally, invert equation 1 with respect to voltage:

$$V_{CC}(est) = P_D(max) \div I_{CC}(max) = 102 \text{ mW} \div 12 \text{ mA} = 8.5 \text{ V}$$

The result indicates that, at T_A , the application and device can dissipate adequate amounts of heat at voltages $\leq V_{CC}(est)$.

Compare $V_{CC}(est)$ to $V_{CC}(max)$. If $V_{CC}(est) \leq V_{CC}(max)$, then reliable operation between $V_{CC}(est)$ and $V_{CC}(max)$ requires enhanced $R_{\theta JA}$. If $V_{CC}(est) \geq V_{CC}(max)$, then operation between $V_{CC}(est)$ and $V_{CC}(max)$ is reliable under these conditions.


Package SM, 3-Pin SIP

For Reference Only - Not for Tooling Use

(Reference DWG-9084-B)

Dimensions in Millimeters – NOT TO SCALE

Dimensions exclusive of mold flash, gate burrs, and dambar protrusions Exact case and lead configuration at supplier discretion within limits shown

ATS668LSM

True Zero-Speed High-Accuracy Gear Tooth Sensor IC

Revision History

Number	Date	Description
_	March 17, 2017	Initial release
1	March 22, 2017	Updated Power Derating and Thermal Characteristics
2	April 24, 2017	Updated Electrical Characteristics table

Copyright ©2017, Allegro MicroSystems, LLC

Allegro MicroSystems, LLC reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

Allegro's products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of Allegro's product can reasonably be expected to cause bodily harm.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, LLC assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

For the latest version of this document, visit our website:

www.allegromicro.com

