

Features

- Advanced Process Technology
- Logic Level Gate Drive
- Ultra Low On-Resistance
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Tjmax
- Lead-Free, RoHS Compliant
- Automotive Qualified *

Description

Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and wide variety of other applications.

Applications

- Electric Power Steering (EPS)
- Battery Switch
- Start/Stop Micro Hybrid
- Heavy Loads
- DC-DC Converter

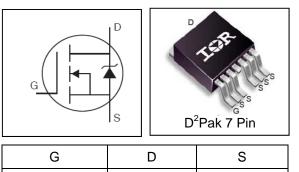
Bass Dart Number		Standar	Complete Dart Number	
Base Part Number	Package Type	Form	Quantity	Complete Part Number
	D ² Pak-7PIN	Tube	50	AUIRLS8409-7P
AUIRLS8409-7P		Tape and Reel Left	800	AUIRLS8409-7TRL

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.

Symbol	Parameter	Max.	Units
$I_{\rm D} @ T_{\rm C} = 25^{\circ}{\rm C}$	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	500 ①	
$I_{\rm D} @ T_{\rm C} = 100^{\circ}{\rm C}$	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	353 ①	
$I_D @ T_C = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V (Wire Bond Limited)	240	A
I _{DM}	Pulsed Drain Current ②	1200®	
P _D @T _C = 25°C	Maximum Power Dissipation	375	W
Linear Derating Factor		2.5	W/°C
V _{GS} Gate-to-Source Voltage		± 16	V
T _J Operating Junction and		-55 to + 175	
Storage Temperature Range			°C
Soldering Temperature, for 10 seconds (1.6mm from case)		300	

Avalanche Characteristics


EAS (Thermally Limited)	Single Pulse Avalanche Energy ③	730	mJ		
E _{AS (Tested)}	Single Pulse Avalanche Energy 3	1580			
I _{AR}	Avalanche Current 2	See Fig. 14, 15, 22a, 22b	А		
E _{AR}	Repetitive Avalanche Energy 2	See Fig. 14, 15, 22a, 22b	mJ		

HEXFET® is a registered trademark of Infineon.

*Qualification standards can be found at www.infineon.com

AUIRLS8409-7P

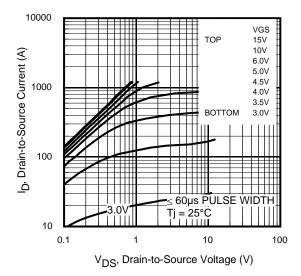
V _{DSS}	40V		
R _{DS(on)} typ.	0.50mΩ		
max.	0.75mΩ		
D (Silicon Limited)	500A①		
D (Package Limited)	240A		

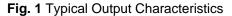
Drain

Source

Gate

Thermal Resistance


Symbol	Parameter	Тур.	Max.	Units
$R_{ ext{ heta}JC}$	Junction-to-Case		0.4	°C/W
$R_{ heta JA}$	Junction-to-Ambient (PCB Mount) ®		40	C/VV


Static Electrical Characteristics @ $T_J = 25^{\circ}C$ (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	40			V	$V_{GS} = 0V, I_{D} = 250\mu A$
$\Delta V_{(BR)DSS} / \Delta T_J$	Breakdown Voltage Temp. Coefficient		0.033		V/°C	Reference to 25°C, $I_D = 5.0 \text{mA}^{\circ}$
			0.50	0.75	mΩ	V _{GS} = 10V, I _D = 100A ⑤
R _{DS(on)}	Static Drain-to-Source On-Resistance		0.60	0.85	mΩ	V _{GS} = 5.5V, I _D = 50A ⑤
20(0)			0.75	1.10	mΩ	V _{GS} = 4.5V, I _D = 50A ⑤
V _{GS(th)}	Gate Threshold Voltage	1.0		2.4	V	$V_{DS} = V_{GS}, I_D = 250 \mu A$
				1.0		$V_{DS} = 40V, V_{GS} = 0V$
I _{DSS}	Drain-to-Source Leakage Current			150	μA	$V_{DS} = 40V, V_{GS} = 0V, T_J = 125^{\circ}C$
	Gate-to-Source Forward Leakage			100	n A	V _{GS} = 16V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = -16V
R _G	Internal Gate Resistance		2.0		Ω	
Dynamic Elec	trical Characteristics @ T _J = 25°C (unless other	wise s	pecified))		
Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
gfs	Forward Transconductance	220			S	$V_{DS} = 10V, I_{D} = 100A$
Q _g	Total Gate Charge		177	266		I _D = 100A
Q _{gs}	Gate-to-Source Charge		65			$V_{DS} = 20V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		80		nC	V _{GS} = 4.5V ⑤
Q _{sync}	Total Gate Charge Sync. (Q _g - Q _{ad})		97			
t _{d(on)}	Turn-On Delay Time		14			$V_{DD} = 20V$
t _r	Rise Time		71			$I_{\rm D} = 100 {\rm A}$
t _{d(off)}	Turn-Off Delay Time		260		ns	$R_{G} = 2.7\Omega$
t _f	Fall Time		115			V _{GS} = 10V ⑤
C _{iss}	Input Capacitance		16488			$V_{GS} = 0V$
C _{oss}	Output Capacitance		1990			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		1373		pF	f = 1.0 MHz
	Effective Output Capacitance (Energy Related) ⑦		2323		•	$V_{GS} = 0V, V_{DS} = 0V \text{ to } 32V \bigcirc$
C _{oss} eff. (TR)	Effective Output Capacitance (Time Related)		2875			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 32V \text{ (6)}$
Diode Charac						
Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
	Continuous Source Current			500 ①	^	MOSFET symbol
I _S	(Body Diode)				A	showing the
	Pulsed Source Current			1200		integral reverse 💦 🌾 🐴
I _{SM}				10	А	
	(Body Diode) ②					p-n junction diode.
V _{SD}	Diode Forward Voltage		0.8	1.2	V	$T_J = 25^{\circ}C, I_S = 100A, V_{GS} = 0V$ (5)
dv/dt	Peak Diode Recovery ④		2.4		V/ns	$T_J = 175^{\circ}C, I_S = 100A, V_{GS} = 40V$
+	Reverse Recovery Time		52		00	$T_J = 25^{\circ}C$ $V_P = 34V$
t _{rr}			57		ns	$\frac{T_{J} = 25^{\circ}C}{T_{J} = 125^{\circ}C} V_{R} = 34V,$
0	Devere Devere Oberry		97			$T_J = 25^{\circ}C$ di/dt = 100A/uss
Q _{rr}	Reverse Recovery Charge		97		nC	$T_J = 125^{\circ}C$
I _{RRM}	Reverse Recovery Current		2.8		А	T _J = 25°C

Notes ${\rm \textcircled{1}}$ and ${\rm \textcircled{1}}$ are on page ~7

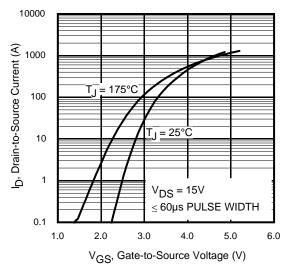


Fig. 3 Typical Transfer Characteristics

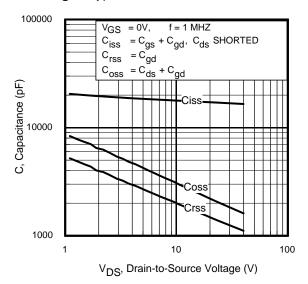


Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

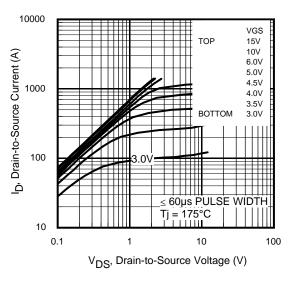


Fig. 2 Typical Output Characteristics

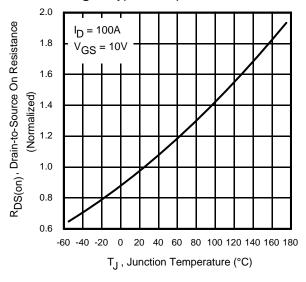
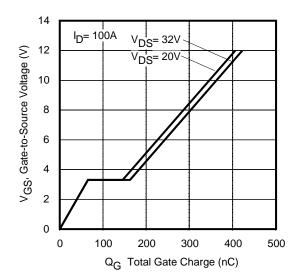
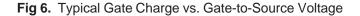




Fig. 4 Normalized On-Resistance vs. Temperature

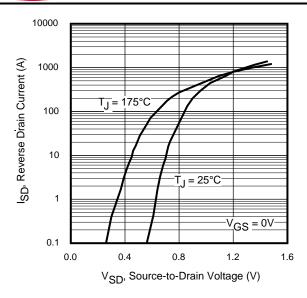


Fig. 7 Typical Source-to-Drain Diode

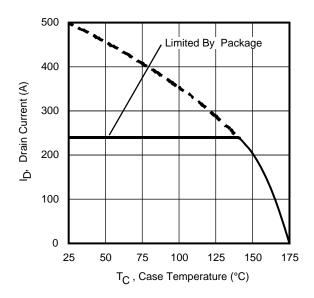


Fig 9. Maximum Drain Current vs. Case Temperature

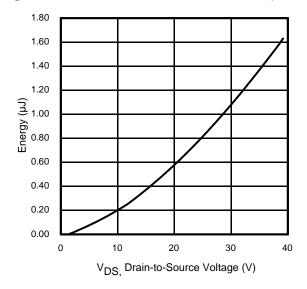


Fig 11. Typical Coss Stored Energy

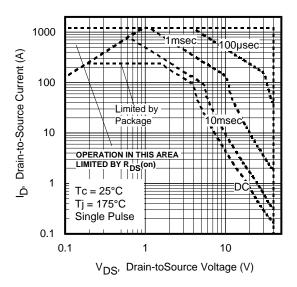


Fig 8. Maximum Safe Operating Area

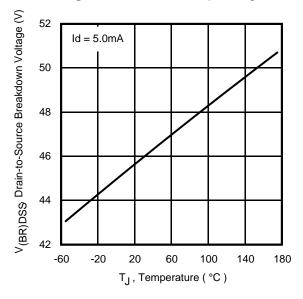


Fig 10. Drain-to-Source Breakdown Voltage

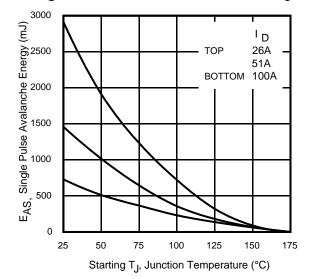


Fig 12. Maximum Avalanche Energy vs. Drain Current

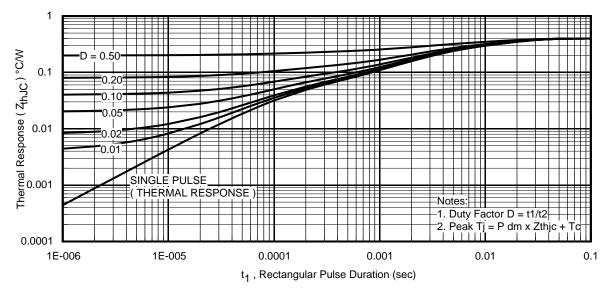
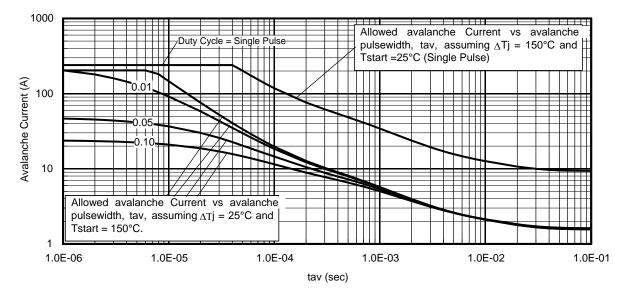



Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com)

- Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax}. This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long as T_{jmax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 23a, 23b.
- 4. PD (ave) = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. Iav = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 13, 14).

tav = Average time in avalanche.

 $D = Duty cycle in avalanche = tav \cdot f$

 $Z_{thJC}(D, tav) = Transient thermal resistance, see Figures 13)$

$$\begin{split} \textbf{P}_{D \ (ave)} &= 1/2 \ (\ 1.3 \cdot \textbf{BV} \cdot \textbf{I}_{av}) = \Delta T / \ \textbf{Z}_{thJC} \\ \textbf{I}_{av} &= 2 \Delta T / \ [1.3 \cdot \textbf{BV} \cdot \textbf{Z}_{th}] \\ \textbf{E}_{AS \ (AR)} &= \textbf{P}_{D \ (ave)} \cdot \textbf{t}_{av} \end{split}$$

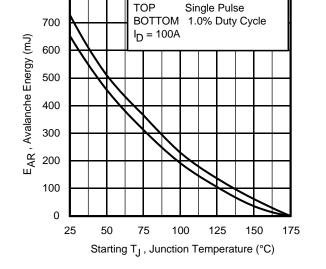


Fig 15. Maximum Avalanche Energy vs. Temperature

800

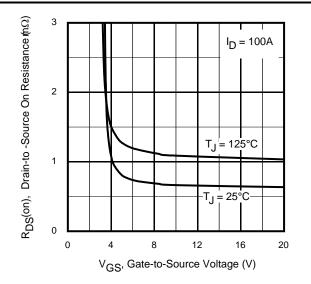


Fig 16. Typical On-Resistance vs. Gate Voltage

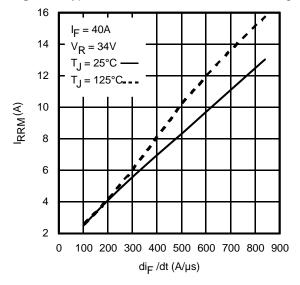


Fig. 18 - Typical Recovery Current vs. dif/dt

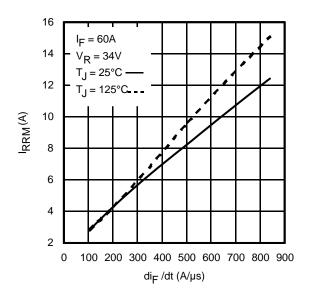


Fig. 20 - Typical Recovery Current vs. dif/dt

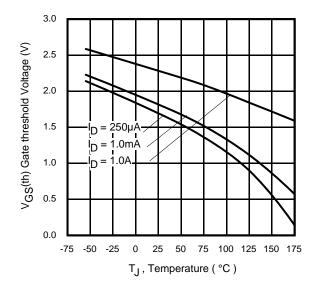


Fig 17. Threshold Voltage vs. Temperature

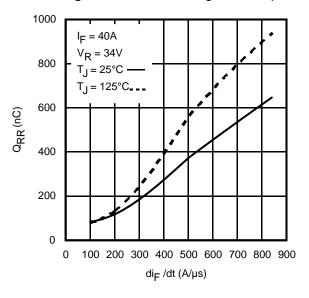


Fig. 19 - Typical Stored Charge vs. dif/dt

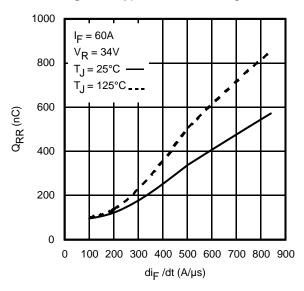
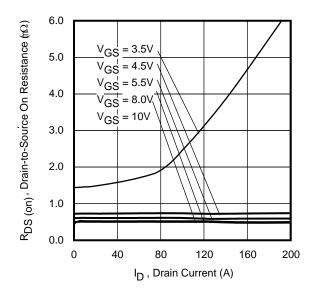
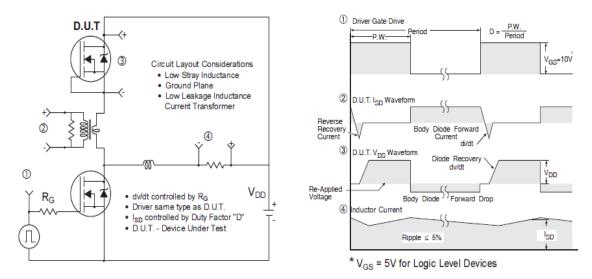
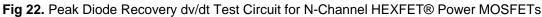


Fig. 21 - Typical Stored Charge vs. dif/dt




Fig 22. Typical On-Resistance vs. Drain Current


Notes:

- ① Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 240A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. (Refer to AN-1140)
- ② Repetitive rating; pulse width limited by max. junction temperature.
- (3) Limited by TJmax, starting TJ = 25° C, L = 0.146mH RG = 50Ω , IAS = 100A, VGS = 10V.
- ④ Isd \leq 100A, di/dt \leq 678A/µs, Vdd \leq V(br)dss, Tj \leq 175°C.
- (5) Pulse width \leq 400µs; duty cycle \leq 2%.

- 6 Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDs is rising from 0 to 80% VDss.
- \odot Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDs is rising from 0 to 80% VDss.
- ⑧ When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.
- ⑨ R_θ is measured at T_J approximately 90°C.
- Pulse drain current is limited to 1200A by source bonding technology

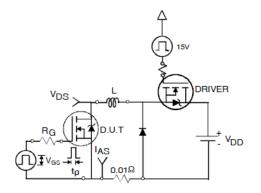


Fig 22a. Unclamped Inductive Test Circuit

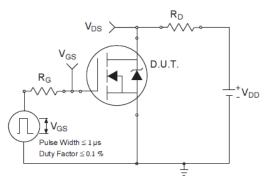


Fig 23a. Switching Time Test Circuit

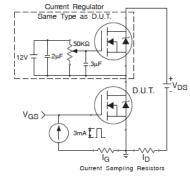


Fig 24a. Gate Charge Test Circuit

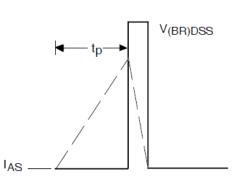


Fig 22b. Unclamped Inductive Waveforms

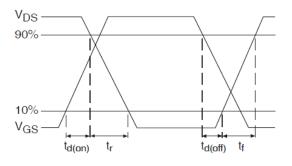


Fig 23b. Switching Time Waveforms

ld

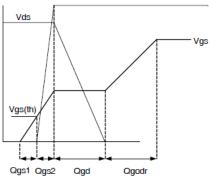
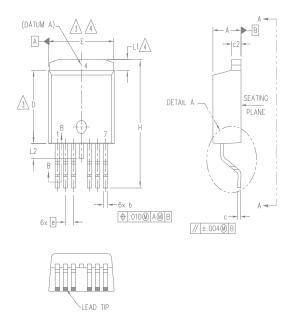
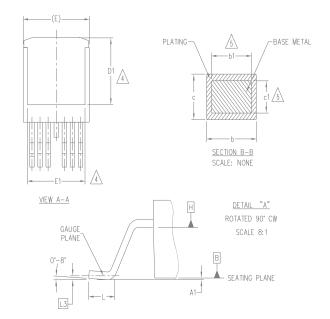




Fig 24b. Gate Charge Waveform

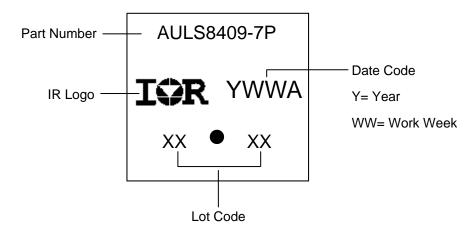
D²Pak - 7 Pin Package Outline

Dimensions are shown in millimeters (inches)

S Y M	DIMENSIONS				
B	MILLIMETERS		INC	O T E S	
0 L	MIN.	MAX.	MIN.	MAX.	E S
A	4.06	4.83	.160	.190	
A1	_	0.254	_	.010	
b	0.51	0.99	.020	.036	
b1	0.51	0.89	.020	.032	5
С	0.38	0.74	.015	.029	
c1	0.38	0.58	.015	.023	5
c2	1.14	1.65	.045	.065	
D	8.38	9.65	.330	.380	3
D1	6.86	7.42	.270	.292	4
E	9.65	10.54	.380	.415	3,4
E1	6.22	8.48	.245	.334	4
е	1.27 BSC		.050	BSC	
Н	14.61	15.88	.575	.625	
L	1.78	2.79	.070	.110	
L1	_	1.68	-	.066	4
L2	_	1.78	-	.070	
L3	0.25 BSC		.010	BSC	

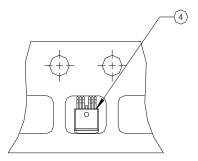
NOTES:

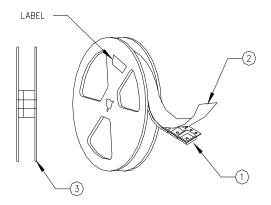
- 1. DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- /3. DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED


 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST

 EXTREMES OF THE PLASTIC BODY AT DATUM H.
- /4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.
- 5. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.
- 6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 7. CONTROLLING DIMENSION: INCH.
- 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-263CB. EXCEPT FOR DIMS. E, E1 & D1.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/


D²Pak - 7 Pin Part Marking Information


D2Pak - 7 Pin Tape and Reel

NOTES, TAPE & REEL, LABELLING:

- 1. TAPE AND REEL.
 - 1.1 REEL SIZE 13 INCH DIAMETER.
 - 1.2 EACH REEL CONTAINING 800 DEVICES.
 - 1.3 THERE SHALL BE A MINIMUM OF 42 SEALED POCKETS CONTAINED IN THE LEADER AND A MINIMUM OF 15 SEALED POCKETS IN THE TRAILER.
 - 1.4 PEEL STRENGTH MUST CONFORM TO THE SPEC. NO. 71-9667.
 - 1.5 PART ORIENTATION SHALL BE AS SHOWN BELOW.
 - 1.6 REEL MAY CONTAIN A MAXIMUM OF TWO UNIQUE LOT CODE/DATE CODE COMBINATIONS. REWORKED REELS MAY CONTAIN A MAXIMUM OF THREE UNIQUE LOT CODE/DATE CODE COMBINATIONS. HOWEVER, THE LOT CODES AND DATE CODES WITH THEIR RESPECTIVE QUANTITIES SHALL APPEAR ON THE BAR CODE LABEL FOR THE AFFECTED REEL.

- 2. LABELLING (REEL AND SHIPPING BAG).
 - 2.1 CUST. PART NUMBER (BAR CODE): IRFXXXXSTRL-7P
 - 2.2 CUST. PART NUMBER (TEXT CODE): IRFXXXXSTRL-7P
 - 2.3 I.R. PART NUMBER: IRFXXXXSTRL-7P
 - 2.4 QUANTITY:
 - 2.5 VENDOR CODE: IR
 - 2.6 LOT CODE: 2.7 DATE CODE:

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualification Information[†]

			Automotive (per AEC-Q101)			
		Comments: This part number(s) passed Automotive qualification. IR's Indus- trial and Consumer qualification level is granted by extension of the higher Automotive level.				
		D ² PAK 7 Pin	MSL1			
	Human Body Model		Class H3A (± 8000V) [†]			
			AEC-Q101-001			
ESD	Charged Device Model	Class C5 (± 2000V) [†]				
		AEC-Q101-005				
RoHS Compliant			Yes			

† Qualification standards can be found at International Rectifier's web site: <u>http://www.irf.com/</u>

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (<u>www.infineon.com</u>).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.